
NIM Training Architecture

Two neural networks (Encoder and Decoder) are trained jointly

Use backpropagation (gradient descent) to minimize loss function:

First term: KL divergence between and

Goal: Make look like i.i.d. samples (as assumed during generation)

Second term: negative log-likelihood of training data under

Goal: Make joint distribution of close to distribution of
training data

Results

•  Modeling accuracy

Nonhomogeneous Poisson process

End-to-end queue simulation (4000 i.i.d. reps)

Daily San Francisco Emergency Calls in 2018

•  Generation speed

•  Roughly 8 million i.i.d. random variables per second

•  Roughly 1,200 length 1,000 sample paths per second

•  Can be further improved by using GPUs

NIM: Generative Neural Networks for Simulation Input Modeling

Motivation

•  Input modeling is key to a simulation study

•  But modeling input processes is challenging because

•  Distribution-fitting software fails for complex i.i.d. distributions

•  Real world input processes are often complex time-dependent stochastic

processes, so we must rely on a simulation expert

•  Good news: data is becoming abundant thanks to

•  IoT sensors, logs, annotated machine vision, etc.

Exploiting Domain-Specific Knowledge

•  NIM can exploit prior knowledge about the process to
improve accuracy and generation speed

•  Dataset is non-negative: apply log transformation to the raw data

•  Dataset is inside a range: apply inverse sigmoid function to the raw data

•  Dataset is truly i.i.d.: a simplified version of NIM can be used, replacing LSTM units

with multi-layer perceptrons (no explicit modeling of temporal correlation)

•  Dataset is multi-modal: for final generation step, VAE now learns parameters of a

Gaussian mixture model

Wang Cen, Emily A. Herbert, Peter J. Haas

University of Massachusetts Amherst

A Solution: Neural Input Modeling (NIM)

•  NIM is a generative neural network

•  Automatically fits complex stochastic processes without a priori knowledge of even the

type of the process

•  Automatically and efficiently generates sample paths during a simulation run

•  Variational Autoencoder (VAE) + Long Short-Term Memory (LSTM)

•  VAE is an easy-to-use generative neural network

•  LSTM concisely captures temporal correlation

•  NIM has good modeling accuracy and fast generation speed

Conclusion

•  NIM uses generative neural networks to model and generate
complex stochastic sequences, without a priori knowledge of
the underlying process

•  NIM can help lower one of the key barriers to simulation,
making it more easily available to non-experts.

•  Training distribution = 0.6 * Gamma(2, 2.875) +
0.4 * Uniform(10, 20)

•  Distribution-fitting software fails to capture complex
multi-modal structure

•  NIM gives close approximation

•  Nonhomogeneous Poisson process with rate
function

•  The figure shows the empirical rate function

•  NIM is only trained with data for t < 50 (left of the
green line)

•  Can extrapolate semi-stationary process over

time (right of the green line)

•  Future work: modeling high-order differences

(like ARIMA) for nonstationary process
extrapolation

NIM Generation Architecture

Only the decoder is used

Training
Data

Encoder

Internal Representation

Decoder

With shifted
training
data

Parameters
for
Generation

Results

•  Modeling accuracy

Gamma-Uniform mixture

•  Ground Truth

•  Simulated a NHPP/Gamma/1 queue

•  NHPP and Gamma as previous

•  Computed average waiting time of the first

100 jobs

•  NIM

•  Learned both arrival process distribution

and service time distribution

•  Used these in the queueing simulation

•  Again computed the average waiting time of

the first 100 jobs

•  Real world data: emergency calls to SF Fire
Department

•  Computed empirical rate function of daily
calls

•  Closely approximated the empirical rate for
actual data

 y1 ∼N(µ̂1,σ̂1),…,yk ∼N(µ̂k ,σ̂ k)

