
NIM Training Architecture

Two neural networks (Encoder and Decoder) are trained jointly















Use backpropagation (gradient descent) to minimize loss function:





First term: KL divergence between                        and 


Goal: Make                  look like i.i.d.             samples (as assumed during generation)


Second term: negative log-likelihood of training data under 

Goal: Make joint distribution of                                              close to distribution of 
training data


Results

•  Modeling accuracy


Nonhomogeneous Poisson process

















End-to-end queue simulation (4000 i.i.d. reps)

















Daily San Francisco Emergency Calls in 2018














•  Generation speed

•  Roughly 8 million i.i.d. random variables per second

•  Roughly 1,200 length 1,000 sample paths per second

•  Can be further improved by using GPUs


NIM: Generative Neural Networks for Simulation Input Modeling


Motivation

•  Input modeling is key to a simulation study

•  But modeling input processes is challenging because

•  Distribution-fitting software fails for complex i.i.d. distributions

•  Real world input processes are often complex time-dependent stochastic 

processes, so we must rely on a simulation expert


•  Good news: data is becoming abundant thanks to

•  IoT sensors, logs, annotated machine vision, etc.


Exploiting Domain-Specific Knowledge


•  NIM can exploit prior knowledge about the process to 
improve accuracy and generation speed

•  Dataset is non-negative: apply log transformation to the raw data

•  Dataset is inside a range: apply inverse sigmoid function to the raw data

•  Dataset is truly i.i.d.: a simplified version of NIM can be used, replacing LSTM units 

with multi-layer perceptrons (no explicit modeling of temporal correlation)

•  Dataset is multi-modal: for final generation step, VAE now learns parameters of a 

Gaussian mixture model


Wang Cen, Emily A. Herbert, Peter J. Haas

University of Massachusetts Amherst


A Solution: Neural Input Modeling (NIM)

•  NIM is a generative neural network

•  Automatically fits complex stochastic processes without a priori knowledge of even the 

type of the process

•  Automatically and efficiently generates sample paths during a simulation run


•  Variational Autoencoder (VAE) + Long Short-Term Memory (LSTM)

•  VAE is an easy-to-use generative neural network

•  LSTM concisely captures temporal correlation


•  NIM has good modeling accuracy and fast generation speed


Conclusion


•  NIM uses generative neural networks to model and generate 
complex stochastic sequences, without a priori knowledge of 
the underlying process


•  NIM can help lower one of the key barriers to simulation, 
making it more easily available to non-experts.


•  Training distribution = 0.6 * Gamma(2, 2.875) + 
0.4 * Uniform(10, 20)


•  Distribution-fitting software fails to capture complex 
multi-modal structure 


•  NIM gives close approximation


•  Nonhomogeneous Poisson process with rate 
function 

•  The figure shows the empirical rate function

•  NIM is only trained with data for t < 50 (left of the 
green line)

•  Can extrapolate semi-stationary process over 

time (right of the green line)

•  Future work: modeling high-order differences 

(like ARIMA) for nonstationary process 
extrapolation


NIM Generation Architecture

Only the decoder is used
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Results

•  Modeling accuracy


Gamma-Uniform mixture





•  Ground Truth

•  Simulated a NHPP/Gamma/1 queue

•  NHPP and Gamma as previous

•  Computed average waiting time of the first 

100 jobs


•  NIM

•  Learned both arrival process distribution 

and service time distribution

•  Used these in the queueing simulation

•  Again computed the average waiting time of 

the first 100 jobs


•  Real world data: emergency calls to SF Fire 
Department


•  Computed empirical rate function of daily 
calls


•  Closely approximated the empirical rate for 
actual data


  y1 ∼N(µ̂1,σ̂1),…,yk ∼N(µ̂k ,σ̂ k )


